Gwyddion

Gwyddion _

Analyse et traitement de données SPM

Introduction

- Gwyddion est un logiciel libre développé par deux chercheurs de l'Institut Tchèque de Métrologie (http://www.cmi.cz), destiné à l'analyse et au traitement de données de type SPM
- Site Internet : http://gwyddion.net
- Principaux développeurs :
 - David Nečas (Yeti)
 - Petr Klapetek
- Version stable actuelle (mars 2012) : 2.26
- Traduction française :
 - François Riguet

Introduction

- Gwyddion est disponible pour les systèmes d'exploitation les plus courants :
 - Linux
 - Windows
 - Mac OS X
 - FreeBSD
- La dernière version bêta est disponible quotidiennement pour Windows et pour les distributions Linux basées sur Ubuntu via un dépôt PPA : ppa:gwyddion-spm/gwyddion-svn

Développement

- Les développeurs sont très réactifs et ouverts pour ajouter de nouvelles fonctionnalités :
 - Nouveaux modules de traitements
 - Import de formats non supportés (à condition de fournir suffisamment de documentation et des exemples de données)
 - Il faut pour cela s'inscrire à la liste de discussion :
 https://lists.sourceforge.net/lists/listinfo/gwyddion-users
- Vous pouvez aussi bien évidemment participer au développement en créant de nouveaux modules de traitement ou d'import

Formats de fichiers

- L'un des objectifs de Gwyddion est de permettre l'import du plus grand nombre de formats possible
 - Actuellement plus de 90 formats de fichiers sont reconnus
 - Les fichiers textes ou binaires non reconnus peuvent être importés manuellement
- Les formats d'export sont en nombre plus limité
 - Gwyddion natif : enregistre tous les canaux, courbes, spectres
 - Gwyddion simple field : format plus simple, mono-canal
 - ISO 28600:2011
 - Quelques formats SPM
 - Plusieurs formats image : BMP, PNG, JPEG...
 - Texte ASCII

Présentation de l'interface

- Gwyddion est un logiciel très intuitif et simple à utiliser
- La barre principale comprend :
 - Les menus pour accéder à toutes les fonctions
 - Les boutons d'affichage (zoom, vue 3D)
 - Les traitements de base (mise à niveau, correction d'artefacts...)
 - Les fonctions d'ajustement de graphes
 - Les outils d'analyse des données

Affichage des données

- Gwyddion peut afficher les données en utilisant différentes palettes de fausses couleurs
 - Un clic-droit sur l'échelle permet d'afficher la liste des palettes
- Les différents canaux présents dans un fichiers sont accessibles dans le navigateur de données

Affichage 3D

- 3 modes d'affichages
 3D sont disponibles
 avec un clic-droit :
 - Gradient : utilise une palette identique à l'affichage 2D
 - Éclairage : utilise une texture plus ou moins diffusante
 - Superposition : applique une palette ou une image sur une texture

Modifier l'échelle des couleurs

- Plusieurs types de visualisation sont proposés :
 - Plage complète
 - Plage partielle définie manuellement par deux points
 - Plage automatique avec exclusions des points aberrants
 - Plage non linéaire

Opérations de base : valeur minimale à zéro

 Modifie l'échelle de hauteur de manière à ce que la valeur minimale de l'image soit nulle

Opérations de base : changement d'échelle

 Permet d'agrandir ou de diminuer la taille de l'image à l'aide de différents types d'interpolation

🍯 Mettre à l'échell	e		_ = ×
Rapport d'échelle : Nouvelle largeur : Nouvelle <u>h</u> auteur :		4,004 ×	proportionnel px px
Type d'interpolation :	BSpline	▼	
Bemis	se à zéro	<mark>⊗</mark> A <u>n</u> nuler	✓ ⊻alider

Opérations de base : rotation arbitraire

 L'image peut être pivotée selon un angle défini manuellement

🥰 Pivoter	-	• ×
Pivoter de l'angle : 45,5 deg Type d'interpolation : Linéaire T Etendre le résultat pour ajuster toutes les données		
<u>R</u> emise à zéro <u>S</u> A <u>n</u> nuler	✓ <u>V</u> alide	r

Opérations de base : dérotation

 L'image peut être redressée en tenant compte des symétries présentes

Opérations de base : soustraction du tilt

- Le tilt peut être supprimé de deux façons :
 - Par soustraction du plan moyen
 - Par analyse
 des zones
 planes

Opérations de base : correction des sauts

Correction des données Compenser la dérive... Correction des lignes par correspondance Correction des lignes par différence médiane Correction des lignes par médiane Correction des lignes par valeur dominante Correction des sauts dans les lignes Correction fractale Dérotation... Distorsion polynomiale... Filtrage <u>F</u>FT 1D... Filtrage FFT <u>2</u>D... Marquer les défauts linéaires... Masquer les points aberrants Moyennage par corrélation... Supprimer les défauts linéaires Supprimer les données sous le masque

 La correction des sauts par médiane est accessible directement

 D'autres
 méthodes sont accessibles
 dans le menu
 Traitement des
 données →
 Correction des
 données

Opérations de base : correction des artefacts

- Les artefacts linéaires peuvent être supprimés facilement
- On peut aussi les marquer à partir du menu Correction des données → Marquer les défauts linéaires

Opérations de base : marquage de grains

E

- Les défauts ponctuels peuvent être marqués en se basant sur :
 - La hauteur
 - La courbure
 - La pente

Opérations de base : segmentation

 La segmentation permet de marquer des grains ou d'autres zones sur les surfaces complexes

Marquer les Grains par Segmentation	- • ×
	Localisation des grains
	Taille de goutte :
	Seuil : 3 🛊 px ²
	Segmentation Nombre de pas : Taille de goutte : 1,00
	Options
	Couleur de <u>m</u> asque :
🄹 Mise à jou	r <u>R</u> emise à zéro ⊗ A <u>n</u> nuler ✔ ⊻alider

Opérations de base : suppression de grains

m

=

×

Supprimer les grains par seuil

 Opération inverse du marquage par seuil

 On supprime ici les zones marquées en fonction de différents seuils

Opérations de base : distribution des grains

Distribution des grains –	• ×
Position	
Valeur	
Surface	
Surface projetée	
Surface	
Côté équivalent	
Rayon équivalent	
Surface au dessus de la mi-hauteur	
Volume	
Bord	
Pente	
Courbure	
Utilisateur	
ptions	
<u>Exporter les données</u>	
Ajouter un en-tête de commentajres	
Dessiner les graphes	
Résolution <u>fi</u> xe : = 120	A V
	er

 Donne les données statistiques des zones marquées :

- Hauteur
- Surface
- Volume

Opérations de base : ombrage

 Fonction permettant de donner un effet d'ombre aux données

Opérations de base : correction de l'arrière-plan

- L'arrière-plan de l'image peut être soustrait en se basant sur un polynôme
- Cette fonction permet d'éliminer
 facilement le tilt et la courbure présents dans une mesure

Opérations de base : suppression des données

=

N

 Cette fonction interpole les données sous le masque

 Utile pour supprimer tous les points chauds ou artefacts présents dans une image

Outils : hauteur et zéro

- Outil simple permettant d'obtenir la hauteur d'un point donné de l'image
- Le bouton « mise à zéro » permet de définir le niveau zéro de l'image

Outils : distances

 Cet outil permet de connaître la distance et la différence de hauteur entre deux points

🚺 Distance 🗕 🖬 🛪				_ = ×	
n	Δx [μm]	∆y [µm]	φ [deg]	R [µm]	Δz [μm]
1	14,1	0,3	-1,1	14,1	1,364
2	6,1	-7,7	51,6	9,9	2,399
3	17,6	1,1	-3,5	17,6	-0,077
0 O _i					
			€ffac	er 🛛 🗖	lasquer

Outils : profils

ISO

•

××

2

Ø

R

 $\sigma^2_{\phi \bar{z}}$ Ra^µ

+

- On peut tracer autant de profils que l'on veut
- En maintenant la touche Maj (shift) appuyée on peut orienter les lignes tous les 15°
- En cliquant sur Appliquer on exporte les profils vers une nouvelle fenêtre

Outils : spectroscopie ponctuelle

 $\sigma^2_{\phi \bar{z}}$ Ra $^\mu$

N

- Cet outil permet
 d'analyser les
 spectres présents
 dans les données
 - La localisation des points de mesure est affichée sur l'image

Outils : statistiques

🥵 Statistiqu	les			_ = ×
Origine			Paramètres	
х	0,000 µm	🧵 🌲 рх	Moyenne :	0,701 nm
V	0.000		Minimum :	0,328 nm
Ŷ	0,000 μm	рх	Maximum :	1,772 nm
Taille			Médiane :	0,664 nm
Largeur	1.645 um	245 🖹 px	Ra (Sa) :	0,110 nm
Langean	Tio io hiii		RMS (Sq) :	0,146 nm
Hauteur	1,203 µm	179 🍦 рх	Asymétrie :	1,42
Mada Maaa	_		Kurtosis :	2,96
Mode Masqu	e		Surface :	1,97866 μm²
🔲 Exclure la r	égion masquée		Surface projetée :	1,97847 μm ²
Inclure uniquement la région masquée		Inclinaison θ :	0,0 deg	
🗌 Utiliser l'im	age entière (ignor	er le masque)	Inclinaison φ :	68,0 deg
Options				
Misos à iou	ur instantanéos			
	in instantanees			
		A Mise à iou	Ir Fffacor	Masquer
		ar Pilse a jui		Masquel

 Les principales caractéristiques statistiques peuvent être calculées pour tout ou une partie de l'image

 Deux boutons permettent de copier ou sauver ces données

Outils : distribution

 Différents types de distributions peuvent être calculées :

- Distribution des hauteur
- Auto-corrélation

– PSD

Outils : statistiques de lignes/colonnes

- Calcule les données de base pour chaque ligne ou colonne :
 - Minimum
 - Maximum
 - Moyenne

– RMS

Outils : rugosité

 Analyse les paramètres de rugosité selon la norme ISO 4287

 L'analyse est faite le long d'une sélection linéaire

 Le paramètre coupure permet de régler la séparation ondulation/rugosité

Outils : mise à niveau à 3 points

Ç	🍯 Mise à niveau par 3 points 🛛 🗖 🛪				
n	x [µm]	y [µm]	Valeur [nm]		
1	0,79	3,41	3613,2		
2	1,76	0,42	3659,1		
3	3,27	1,62	3673,0		
R <u>a</u>	R <u>a</u> yon de moyennage :				
	Mise à jour instantanée				
🗌 Mise à zéro du plan					
▲ Effacer Masquer ▲ Appliquer					

- Cet outil permet de définir les points à mettre au même niveau
- On peut définir une zone pour s'affranchir du bruit

Outils : mise à niveau des lignes

 Cet outil est similaire à la correction des sauts entre les lignes, à la différence qu'on peut spécifier les zones à corriger à l'aide de sélections

Outils : mise à niveau par polynôme

🚰 Polynôme		_ = ×	
Origine			
Х	0,000 µm	0 🛔 рх	
Υ	0,000 µm	0 🍦 рх	
Taille			
Largeur	1,200 μm	210 🍦 рх	
Hauteur	1,200 µm	210 🗼 рх	
Mode d'ajustement			
<u>Т</u> уре :	Ajustement cubique 🛛 🔻		
Direction <u>h</u> orizontale			
Direction verticale			
<u>Exclure la zone sélectionnée</u>			
(sinon elle sera utilisée pour l'ajustement)			
▲ Effacer Masquer ▲ Appliquer			

 Autre méthode de mise à niveau des lignes utilisant un polynôme dont on peut choisir l'ordre

Outils : rognage

Outil permettant d'extraire un détail d'un image

🍯 Rognage		- • ×	
Origine			
х	3,187 µm	331 🛔 рх	
Y	3,605 µm	374 🛔 рх	
Taille			
Largeur	0,529 μm	56 🛔 рх	
Hauteur	0,674 μm	71 🛔 px	
Conserver les offsets latéraux			
🔲 Créer un nouveau canal			
▲ <u>E</u> ffacer Masquer ▲ Appliquer			

Outils : édition du masque

🥰 Editeur de m	nasque _ =	×	
Editeur			
🔲 Forme <u>s</u> :			
Mode :			
Forme :	• /		
🗌 Outils de <u>d</u> essi	in		
Outil :	🔄 🔺 🔼		
Rayon :	= 8 * p	ж	
Actions			
[] Inverser	🛛 🗶 Supprimer 🛛 🗮 Remplir 🔤 Remplir les vides	5	
Dilater / Eroder			
Dilater	Eroder		
Qu <u>a</u> ntité : 😑	5 \$	ж	
🗌 Eroder à partir du <u>b</u> ord			
🔲 Empêcher la fu	usion de grains lors d'une dilatation		
	Masquer		

- Le masque peut avoir plusieurs objectifs :
 - Marquer certains détails (grains, facettes)
 - Marquer des défauts (artefacts de scan, points aberrants)
 - Marquer les points
 « sans donnée »
 dans certains
 formats de fichier

Outils : mesure des grains

Mesure de grain		_ 0 ×		
Identifiant				
Numéro du grain	id	12		
Position				
Position centrale X	×c	2,368 µm		
Position centrale Y	y _c	2,040 µm		
🕙 Valeur				
Surface				
Surface projetée	A ₀ 19,	44 × 10 ⁻¹⁵ m ²		
Surface	A _s 29,0	07 × 10 ⁻¹⁵ m ²		
Côté équivalent	aeq	139,4 nm		
Rayon équivalent	r _{eq}	78,66 nm		
Surface au dessu	A _h 8,30	66 × 10 ⁻¹⁵ m ²		
• Volume				
* Bord				
🛨 Pente				
\pm Courbure				
Utilisateur				
Image: State S				

 Affiche les caractéristiques des grains

 Il suffit de cliquer sur une zone marquée pour obtenir sa surface, son volume...

Outils : suppression de grains

Outil permettant de supprimer localement le masque et/ou de corriger les données marquées

Outils : suppression de points chauds

 Cet outil permet de corriger localement l'image à l'aide de différents algorithmes d'interpolation

🚰 Supprimer les points chauds	_ = ×
	Options Méthode d' <u>i</u> nterpolation :
	Applatissement hyperbolique 🔻
▲ Effacer	Masquer Appliquer

Outils : filtrage

🥑 Filtre		-		×
Origine				
х	26,0 μm	97	*	рх
Y	31,3 µm	117	▲ ▼	рх
Taille				
Largeur	34,7 μm	131	▲ ▼	рх
Hauteur	21,9 µm	83	*	рх
Filtre				
<u>T</u> ype :	Gaussien		▼]	
Taille :	=======================================	10	A V	рх
■ Efface	r Masquer 🖌	Applio	que	r

- Cet outil propose les filtres classiques :
 - Filtrage gaussien
 - Filtrage médian

- ...

 On peut appliquer le filtrage sur une zone

Outils : sélections

M

Т

•

N B ISO

××

 $\sigma_{\phi\mu}^2 \bar{z}$

🧲 Gestic	onnsélect	tion _ = ×
Nom	Туре	Objets
pointer	Points	1
line	Lignes	3
rectangle	Rectangles	1
Distribuer) 🗌 vers to	us les fichiers
	Masquer	<u>■</u> Effacer

 Les différentes sélections utilisées par les outils (points, lignes, zones rectangulaires) sont données par cet outil

 Le bouton Distribuer permet de les appliquer aux autres canaux et fichiers

Ajustement de courbes : marche et porte

 L'outil de mesure de dimension critique permet de mesurer la hauteur et/ou la largeur d'une marche ou d'une porte

Ajustement de courbes : fonctions

 Les profils peuvent être ajustés par différentes fonctions :

- Gaussienne
- Lorentzienne
- Exponentielle

Autres fonctions : filtrage FFT

- Correction des données →
 Filtrage FFT 2D
- L'outil permet de visualiser la TF et le résultat du filtrage

Autres fonctions : présentations

etched_silicon.m...] 1:1 (Gwyddion) 💷 🛛 🛪 5,0 μm 4,5 4.0 3.5 3.0 2,5 2.0 1.5 (13,09 μm, 10,15 μm): 1,670 μm

 Une présentation est une couche placée par-dessus les données, permettant de visualiser certains détails de l'image :

- Détection de bords
- Affichage logarithmique

Autres fonctions : synthèse de surface

- Attention : cet ensemble de fonctions peut anéantir votre productivité...
- Différents types de synthèse sont possibles :
 - Bruit
 - Bruit linéaire
 - Motifs : créneaux, marches, trous
 - Objets : sphères, pyramides, gaussiennes...
 - Particules
 - Spectre : surface aléatoire générée par une PSD
- Différentes options sont disponibles pour chaque type

Autres fonctions : synthèse de surface

	Objets aléatoires				- • ×
	LADUAD	Dimensions	Générateur		
		Forme :	Sphères		
		Couverture :		1.000	
	Marth V			8	35 obj.
		Taille			
		Dimension :			рх
		Variance :		20,0	00 A
		Rapport d'	espect	[0,000	<u>*</u>
		Rapport d'as	spect :	1,00	4
	ATT ALCON	Variance :	=	0,000	
		Hauteur			
		Hauteur :		1,0000	▲
		🛛 💭 🔲 🖾 Mettre à	l'échelle avec la t	aille	
		Variance :	=	0,000	A
	THE PARTY OF	Tronguer :		1.000	
	Mise à jour 🗵 Mise à jour instantanée	Variance :			× •
	Graine <u>a</u> léatoire : 42	Orientation		0,000	<u>*</u>
	🗵 Randomiser	Orientation :		0.0	dea
		Variance :		0.000	A
		Bemis	se à zéro 🛛 🚫 🗛	nuler	lider
					7
G Synthese s	pectrale				- • ×
Standard .		Dimensions Généra	ateur		
		PMC -		- I 000	0
a statement of		UND :		[1,000	•
		Fréquence minimum	n: 🖅	0,000	a px⁻¹
1999年1994年				_	0,00000
Second States		Fréquence maximun	n: 💳	4,443	px ⁻¹
C. C. Parallel					4,44288
	Contraction of the Contraction of the	Activer le multip	icateur <u>G</u> aussie	n	
		Longueur d' <u>a</u> utocor	rélation : 💻	10,0	a px
40.85					10,000
C. Starting		🔲 Activer le multip	licateur puissan	ce	
A The Additional State					A
and the second se		Puissance :		1,500	v
	Martha alter	Puissance :	=	[1,500	T
	B. Sec. 10.	Puissance :		1.500	V
	Pro Sa	Puissance :	=	[1,500	Ŧ
	P. A. S.	Puissance :	-6	1,500	Ŧ
		Puissance :	-	[1,500	Ŧ
Mise à jour	Mise à jour instantanée	Puissance :	-	1,500	Ŧ
Mise à jour	Mise à jour instantanée	Puissance :		1,500	
Mise à jour	Mise à jour instantanée	Puissance :	-	1,500	Ŧ
Mise à jour I Graine <u>a</u> léatoire I Randomiser	Mise à jour instantanée	Puissance :		1,500	Ŧ

Objets

On peut modifier le rapport d'aspect et l'orientation des objets

- Spectre
 - Le multiplicateur puissance permet de générer une surface fractale

Le reste...

Gwyddion propose de nombreuses autres fonctions, à vous d'explorer !

Correction des données × Compenser la <u>d</u> érive Correction des lignes par correspondance Correction des lignes par di <u>ff</u> érence médiane Correction des lignes par médiane Correction des lignes par valeur d <u>o</u> minante Correction des sauts dans les lignes	Grains <u>C</u> orrélation <u>D</u> istributions Marqu <u>e</u> r par détection de bord Marquer par segmentation <u>M</u> arquer par seuil Mise à niveau de grains	Sonde ×		Masque × ■ Extraire le masque Inverser le masque Marquer avec Supprimer le masque	
Correction <u>f</u> ractale Dérotation Distorsion polynomiale Filtrage <u>F</u> FT 1D Filtrage FFT <u>2</u> D M <u>a</u> rquer les défauts linéaires Masquer les p <u>o</u> ints aberrants Moyennage par <u>c</u> orrélation <u>S</u> upprimer les défauts linéaires Supp <u>r</u> imer les données sous le masque	Statistiques Supprimer par seuil Statistiques × Analyse des facettes Autocorrélation 2D Dimension fractale Distribution angulaire Digtribution des pentes Section de PSD	Calibration <u>Appliquer aux données</u> Calculer une carte d'erreur b Charger un fichier de ca <u>l</u> ibrat <u>C</u> réer	× asique tion	Multidonnées × Arithmétique Corrélation croisée Fusion Incruster un détail Masquer par corrélation Rognage mutuel	
Attacher une présentation Contraste local Dét <u>e</u> ction de bord Echelle logarithmique Extraire la présentation Gradient Ombre Supp <u>r</u> imer la présentation Mantion × Analyser	× ion otropie discrète sformée continue (<u>C</u> WT 2D) sformée discrète (<u>D</u> WT 2D) Ni Ba Va	liveau × uster la sphère rc de révolution rrière-plan polynomial ourbure xer le zéro iveau des <u>f</u> acettes iveau médian iveau p <u>l</u> an otation de plan aleur <u>m</u> oyenne à zéro	 <u>D</u>imensions e Echantillons Echelle Inclinaison Inverser les v Limiter la plag Renverser ho Renverser ver Rotation Rotation sens Supprimer l'o 	et unités carrés ge des valeurs rizontalement rizontalement et verticalement rticalement s dire <u>c</u> t s indirect ffset	