

Czech Metrology Institute, Czech Republic

Gwyddion
Open source software for SPM data analysis

Outline

- history, developers and development scheme

- program core and architecture

- modules, tools and plugins

- data processing modules and tools

- advanced statistical functions

- Pygwy scripting interface

Outline

Development started in 2003, formerly as part of unrealized project of

NANOMET group joining European metrology institutes working on the

field of nanometrology.

Due to lack of software that would be transparent enough, CMI started

developement in a small group (Petr Klapetek, David Nečas), that was

extended by many other developers in next years.

Gwyddion

Open source software for SPM data analysis

Gwyddion works on GNU/Linux, Microsoft Windows, Mac OS X and

FreeBSD operating systems on common architectures, all systems can be

used also for developement. Its graphical user interface is based on Gtk+

and port to other systems supported by Gtk+ should be possible.

Gwyddion is Free and Open Source software, covered by GNU General

Public License. It aims to provide multiplatform modular program for 2D

data analysis that could be easily extended by modules and plug-ins.

Gwyddion

Gwyddion is written in C and builds on Gtk+ and GLib libraries. It relies on the
GLib utility library for portability and uses GLib object system GObject for its
own objects. Graphical user interface is implemented with the Gtk+ toolkit, with a
fair amount of Gwyddion specific extension widgets.

The program can be divided into four main components, each discussed in details
below:

 1. libraries, providing basic and advanced data processing routines, graphical
user inreface elements and other utility functions and objects,
 2. the application, quite small and simple, serving primarily as a glue connecting
the other components together in a common graphical interface,
 3. modules, technically run-time loaded libraries, that provide most of the actual
functionality and present it to the user, they often extensively use library methods,
 4. plug-ins, standalone programs that are more independent of Gwyddion than
modules, both technically and legally.

Gwyddion relies on the GLib utility library for portability and uses GLib
object system GObject for its own objects. Graphical user interface is
implemented with the Gtk+ toolkit, with a fair amount of Gwyddion
specific extension widgets.

Gwyddion can be divided into four main components:
 1. libraries, providing basic and advanced data processing routines,
graphical user inreface elements and other utility functions and objects,
 2. the application, quite small and simple, serving primarily as a glue
connecting the other components together in a common graphical
interface,
 3. modules, technically run-time loaded libraries, that provide most of
the actual functionality and present it to the user, they often extensively
use library methods,
 4. plug-ins, standalone programs that are more independent of
Gwyddion than modules, both technically and legally.

Basic structure

Gwyddion

Gwyddion is written in C and builds on Gtk+ and GLib libraries. It relies on the
GLib utility library for portability and uses GLib object system GObject for its
own objects. Graphical user interface is implemented with the Gtk+ toolkit, with a
fair amount of Gwyddion specific extension widgets.

The program can be divided into four main components, each discussed in details
below:

 1. libraries, providing basic and advanced data processing routines, graphical
user inreface elements and other utility functions and objects,
 2. the application, quite small and simple, serving primarily as a glue connecting
the other components together in a common graphical interface,
 3. modules, technically run-time loaded libraries, that provide most of the actual
functionality and present it to the user, they often extensively use library methods,
 4. plug-ins, standalone programs that are more independent of Gwyddion than
modules, both technically and legally.

The libgwyddion library defines some core interfaces, like GwySerializable for
data-like objects, GwyContainer, GwySIUnit etc.

The libprocess library defines two basic objects: GwyDataField. representing
two-dimensional data and GwyDataLine, representing one-dimensional data.
There are many process and analysis functions implemented for these objects.

The libdraw library provides colour handling and elementary data rendering
functions (gradients, selections).

The libgwydgets library is a collection of Gwyddion-specific Gtk+ widgets, like
GwyDataView, GwyDataWindow, GwyGraph

The libgwymodule library deals with module administrative, loading and act as a
proxy in their usage.

The libgwyapp library contains main application related functions (loading,
saving, etc.).

Basic structure

Gwyddion

Gwyddion is written in C and builds on Gtk+ and GLib libraries. It relies on the
GLib utility library for portability and uses GLib object system GObject for its
own objects. Graphical user interface is implemented with the Gtk+ toolkit, with a
fair amount of Gwyddion specific extension widgets.

The program can be divided into four main components, each discussed in details
below:

 1. libraries, providing basic and advanced data processing routines, graphical
user inreface elements and other utility functions and objects,
 2. the application, quite small and simple, serving primarily as a glue connecting
the other components together in a common graphical interface,
 3. modules, technically run-time loaded libraries, that provide most of the actual
functionality and present it to the user, they often extensively use library methods,
 4. plug-ins, standalone programs that are more independent of Gwyddion than
modules, both technically and legally.

 - data processing modules provide functions for processing of two-dimensional
data arrays (e.g. Fast Fourier Transform module), or changing the graphical
presentation of data (e.g. shading module). Data processing modules usually get
data (i.e. two-dimensional field of SPM data), possibly ask for processing options
and do the requested data processing. More interactive functions are typically
better implemented as tool modules.

- file loading and saving modules handle import and export of foreign file
formats, also the Gwyddion native file format is handled by a module.

 - graph modules operate on one-dimensional data (graphs), e.g. profiles obtained
by Profile selection tool. An example is Function fit module.

- tool modules provide tools operating on two-dimensional data directly in
application data windows. They have typically more interactive interface than
processing modules and allow to select objects on the data with mouse. Examples
include Read value or Three-point leveling tools.

Basic structure

User interface

Main window (toolbox)

Icons: selected processing modules (also
from Data process), namely for most
frequently used operations

Graph modules: fitting, measuring, export

 Tools: processing modules using mouse
selections (using current DataWindow
interactively).

User interface

Data browser
Displays the structure of currently
focused file (container).

There can be more data in single file,
representing more 2D measurements,
diferent processing stages, graphs,
spectra etc.

Data can be added to container using
drag and drop mechanism.

User interface

Data window
Key part of Gwyddion – displaying 2D data
in false color representation.

Ability to change color scale, pixel
representation, make mouse selections etc.

User interface

Graph window
Displaying 1D data, graphs, profiles,
extracted spectra. Limited processing
possibilities, namely for measurement and
fitting functions.

User interface

Spectra
Using spectroscopy tool the graphs
associated to certain points in 2D data
(like spectra for F/D or I/V curves) can
be displayed or extracted into graphs.

User interface

Mask
Selected area (not necessarily
contiguous) used as input or output
from data processing modules.

Presentation
Data representation not related
directly to z-values (shading,
edge detection). Modules still use
real data behind.

User interface

3D data display
OpenGL widget showing data in
pseudo3D view. Only for export,
can be disabled at compile time.

User interface

Metadata
Data related to measurement, if
known and understood from file
format.

Advanced data processing algorithms

Gwyddion features many different algorithms and is able to perform all
the basic tasks in SPM data visualisation, processing, direct or
statistical analysis.

Here we discuss more in detail the following sets of data processing
tools, that are a bit more advanced:

- tip convolution effect related algorithms
- fractal analysis
- grain and particle analysis
- scripting interface

Tip related functions

Functions related to AFM tip convolution effect

Tip related functions

Tip related functions

Blind tip estimation algorithm results

Tip related functions

Certainty mapCertainty map

Surface reconstruction

Fractal analysis

10 log
)(log

lim 


l
lN

D
lf

where Df = 3 - H

Fractal analysis: determining fractal dimension Df or Hurst
exponent H.

Fractal analysis

Set of methods for determining the fractal dimension from
height fields. Tested on simulated data (using fBm).

Fractal analysis

Cube counting and triangulation method efficiency

Fractal analysis

Partitioning and PSDF method efficiency

Particle analysis

Image segmentation: thresholding vs watershed algorithm

Particle analysis

Particle statistical functions and quantities:

mostly optimized for small aspect ratio particles

or spherical particle, however, “boundary”

quantities can be used for higher aspect ratio

particles as well.

Particle analysis

Particle analysis

Special statistical functions and quantities can be easily developed both

using C and Python libraries.

Particle analysis

Tip convolution effects on measured particles

Correlation search for
nanoparticles based on its
spherical center

Average particle shape

High aspect ratio particles

Individual particle properties for

carbon nanotube

Nanoparticle measurement uncertainties

Calibration of carbon nanotubes,
or fullerenes (here C60),
prepared from dispersion

Analysis results:
height:
0.8 ± 0.2 nm
width:
32 ± 4 nm

C60 AFM measurement

Constant force (small,
repulsive) simulated AFM
image with silicon tip.

Large forces again cause
big tip structural changes,
similarily to DFT
calculations.

Height/lateral size values
averaged for different
forces:

H: 0.97 ± 0.08 nm

W: 1.92 ± 0.12 nm

PyGwy interface

Gwyddion provides a Python binding of nearly all the library functions.
Data processing or visualization modules can be therefore written also in
Python. This is a recommended method for writing simple modules (if not
in C). Former plug-in interface won't be supported in future.

Moreover, there is a batch scripting suport using Python language and
Python inferface supported in Gwyddion. For this, a Python console can be
used.

PyGwy interface

import gwy

plugin_menu = "/Correct Data/Invert"
plugin_type = "PROCESS"

def run():

 key = gwy.gwy_app_data_browser_get_current
 (gwy.APP_DATA_FIELD_KEY)
 gwy.gwy_app_undo_qcheckpointv(gwy.data, key)

 d = gwy.gwy_app_data_browser_get_current(gwy.APP_DATA_FIELD)

 d.invert(0, 0, 1)
 d.data_changed()

Example of very simple processing module (invert) using Pygwy

PyGwy console

Future directions

- Version 3.0 – simplified and improved.

- 3D calibration, uncertainty propagation and evaluation

- Nonequidistant measurements, general 3D data

- Improved graphs

- More modules dedicated to specific tasks?

