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Roughness

Roughness of solid surfaces is a common
phenomenon.

Quantitiative characterisation is important for
I technological process optimisation
I deeper understanding of phenomena behind

surface treatment
I interpretation of measurement in

I nanoindentation
I optics – ellipsometry, spectrophotometry, ...
I X-ray photoelectron spectroscopy
I ...

I surface chemistry, also biology

Roughness can be characterised using the above
methods. They are sensitive to different properties and
applicable to different kinds of rough surfaces.

Atomic force microscopy AFM (or profilometry, at a
larger scale) provides directly the topography of the
surface – the ultimate information.

Rough surface near Cinder Cone,
California, USA

Rough surface of ZnSe film – AFM
data visualisation
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Atomic force microscopy data

AFM provides heightfields of limited
I size
I resolution (often due to tip concolution)
I maximum slope (due to tip concolution)

Too fine, too coarse or too steep features are
not adequately captured.

The data rarely can be directly analysed.
Usually, corrections are necessary:

I levelling (plane, polynomial)
I line-by-line-match
I local defect correction
I Fourier-domain filtering

All represent serious data manipulation.
Atomic force microscope scheme
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Visual assessment

A widespread practice is to just publish AFM images.

Because, of course, everyone can easily tell from a topographical image how rough or
smooth the surface is.

For instance, the left surface is obviously smooth while the right one is rough:

Oops! We forgot the scales (also common).

But wait, now it is no longer clear which is which.
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More difficulties

It can get even more complicated.

Large topographic features can be mixed with roughness in various ways.

Microchip surface TiO2 film at a certain growth stage

Maybe we have to resort to mathematics after all.

And consider the simple case first: Surfaces corresponding to wide-sense stationary
stochatic random processes. In other words, they are the same everywhere from the
statistical point of view.
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Quantification

To goal is to characterise the roughness, i.e. to represent the information from the image
using just a small number of quantities.

Balance is needed between not being able to compare because we have too much data
and because we have reduced the data too much.

I scalar – a single number (or set of them)
I one-dimensional characteristic – distributions, correlation functions
I two-dimensional – rare, usually an intermediate step

Approaches:

I Use a norm: ASME B46.1-1995, ASME B46.1-1985, ISO 4287-1997, ISO
4287/1-1997, . . . This is the safe path to comparable results – sort of. But we may not
have any idea how is the height of the third highest peak from the third lowest valley
per sampling length related to anything we are trying study.

Most norms have origin in profilometry – i.e. for profiles, defining 1D parameters called
Rsomething. 2D are called Ssomething.

I Try to calculate quantities that are relevant for other measurements or processes – for
instance power spectrum density for optics. This may be is difficult and even more
difficult to compare.

Several basic concepts and quantities are common to both approaches.
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Sampling

The surface can be imagined as a two-dimensional
function z(x , y) defined on entire R× R.

Measurement samples this function at discrete points
in a finite area.

Thus we obtain a matrix of heights zi,j , where
i = 0, 1, 2, . . . ,N − 1 and j = 0, 1, 2, . . . ,M − 1.

But we try to find properties of the surface⇒ good
characteristics should be sampling-independent.
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Height distribution characteristics

The simplest characteristics depend on the distribution of heights %(z) and measure the
roughness magnitude.

Assumption: The mean value is zero (possible since the surface is the same everywhere)

N−1X
i=0

M−1X
j=0

zi,j = 0 that approximates lim
Ω→R2

1
|Ω|

Z
Ω

z(x , y) dx dy = 0

Root mean square roughness

Sq = σ =

24 1
MN

N−1X
i=0

M−1X
j=0

z2
i,j

351/2

Average roughness

Sa =
1

MN

N−1X
i=0

M−1X
j=0

˛̨
zi,j
˛̨

σ2 =

Z
z2%(z) dz Sa =

Z
|z|%(z) dz

Sampling independent – mostly.
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Beyond Sa and Sq

These profiles were taken from surfaces with
quite similar both Sa and Sq.

But the roughness is obviously different.

And in certain applications the surfaces
would behave quite differently.

A number of other height distribution
parameters are aimed at capturing this.

Peak and valley parameters – or minimum and maximum in plain terms

Sp = max
i,j

zi,j , Sv = min
i,j

zi,j

Useful for indication of unusual sharp spikes or cracks.

Skewness Ssk, kurtosis Sku – third and
fourth order moments of %(z).

One-dimensional characteristics:
bearing ratio curve (BRC). In plain
terms, the cummulative height
distribution.

B
R
C

Height
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Spatial characteristics

Surfaces can have the same height distributions yet differ a lot:

The difference is in spatial properties. Listing only Sq as the complete roughness
description is wrong.

In AFM we often determine spatial properties along scan lines, i.e. profiles along the fast
scanning axis:

I more reliable – does not rely on correct mutual alignment of lines
I simpler – spatial properties in two dimensions can be complex

Hence we use characteristics of one-dimensional data for two dimensional-data – possibly
with futher processing over individual lines (accumulation, averaging).

This is all right if the surface is isotropic.
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Peak counting

Norms usually employ peak counting and require to choose certain thresholds.

zero (mean)
lower threshold
upper threshold

Peak must extend above the upper threshold and then fall below the lower threshold to be counted.

zero (mean)

threshold

High spot is simpler – defined by crossing only one threshold.

Peak count Pc – number of peaks per unit length.

High spot count HSC – number of high spots per unit length.

Mean spacing Sm – average distance between zero crossings (in one direction).

Similarly for valleys.
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Hybrid parameters

Another class of parameters is related to local slopes.

Local derivatives are approximated as (zj − zj−1)/∆x – somewhat crude and sensitive to
sampling.

Average slope

∆a =
1

N − 1

N−1X
j=1

|zj − zj−1|
∆x

approximates ∆a = lim
L→∞

1
L

Z L

0
|z′(x)| dx

Root mean square average slope

∆q =

vuuut 1
N − 1

N−1X
j=1

»
zj − zj−1

∆x

–2
approximates ∆q = lim

L→∞

s
1
L

Z L

0

`
z′(x)

´2 dx

Actual (developed) profile length

L0 =

N−1X
j=1

q
∆2

x + (zj − zj−1)2 approximates L0 = lim
L→∞

Z L

0

q
1 +

`
z′(x)

´2 dx
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Autocorrelation function

Influence of roughness on physical quantities depends, however, on correlation properties
and/or spatial frequencies present in the surface.

Autocorrelation function (1D)

Gx (τx ) = lim
L→∞

1
2L

Z L

−L
z(x) z(x + τx ) dx

approximated for τx = k∆x

Gk =
1

M − k

M−1−kX
j=0

zj zj+k

usually with averaging over rows.

ACF expresses how the surface is correlated
(similar) to itself at distance τx .

It goes to zero for τx so large that the heights
become independent.

This leads to the notion of autocorrelation
length (or autocorrelation distance) T .
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Modelling

Gaussian

Gx (τx ) = σ2 exp

 
−
τ2

x

T 2

!

Common model since Gaussian has many
nice properties that simplify calculations.

Exponential

Gx (τx ) = σ2 exp
“
−
τx

T

”
Arguably more likely to be the result of
certain physical proceses.

How do we actually get the root mean square roughness σ and autocorrelation length T?

Using fitting:
I calculate discretised Gk from

experimental data (an efficient
algorithm is FFT-based)

I select a model for Gx (τx ) –
usually one of the two above

I fit the model on the discretised
ACF
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n

Distance τx

~ σ2

~ T

This works well if Gk converges to Gx (τx ) as the measurement area gets larger.

It does (pointwise) but with some quirks.
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Discrete versus continuous

Fun fact: If the surface mean value is zero then

M
2

G0 +

M−1X
k=1

(M − k)Gk = 0 .

This means Gk must take both signs (or Gk ≡ 0).

But the model ACF is nonnegative everywhere.

How is that possible?

Discretised Gk for large k is calculated from only a few
values – not converged, unreliable.

We can throw away the worthless part or use weighting.
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Distance τx
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Power spectrum density

Spatial relations are often expressed using another quantity: the power spectrum density
function.

It describes the content of spatial frequencies in the surface. It is the modulus of Fourier
transform:

Wx (kx ) ∝ lim
L→∞

1
2L

˛̨̨̨
˛
Z L

−L
z(x)eikx x dx

˛̨̨̨
˛
2

Due to Wiener–Khinchin theorem for stationary process Wx (kx ) and Gx (τx ) are Fourier
transforms of each other.

So they bear the same information but expressed differently.

Distance τx

~ σ2

~ T

Autocorrelation

Spatial frequency kx

~ σ2T
~ 1/T

Power spectrum density



Roughness characterisation Power spectrum density David Nečas et al. 18 / 27

PSDF versus ACF

Distance τx

Autocorrelation

Spatial frequency kx

Power spec. density

Distance τx

Autocorrelation

Spatial frequency kx

Power spec. density
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Modelling

Gaussian (corresponds to Gaussian
ACF)

Wx (kx ) =
σ2T
2
√
π

exp

 
−

k2
x T 2

4

!
Exponential (corresponds to exponential
ACF)

Wx (kx ) =
σ2T
π

1
1 + k2

x T 2

Fitting of these model functions is again used to obtain T and σ.

Discretised PSDF is calculated using discrete Fourier transform of the data:

Wν ∝ |Zν |2 , where Zν =
1
√

M

M−1X
j=0

zj e−2πi jν

We only write ∝ because no generally agreed-upon convention exists:
I continuous FT exponent can be either ikx x or 2πikx x – circular vs. straight frequency,
I direct FT followed by inverse FT must give the original function but this still permits an

arbitrary split of multiplicative factors between the direct and inverse FT,
I we cannot prescribe a specific normalisation of both the Fourier coefficients and

spectrum density,
I discretisation of normalisation for finite energy vs. finite average power functions.

The result: a mess. PSDF from different software is difficult to compare.
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Energy theorem

Are some PSDF conventions better than others?

We impose: Plancherel/Parseval theorem – sum/integral of power spectrum is the same
as sum/integral of squared data values.

There is no shortage of them:

Discrete Fourier transform
M−1X
j=0

z2
j =

M−1X
ν=0

Wν

Classic Fourier series of a periodic
function

1
2π

Z π

−π
z(x)2 dx =

∞X
n=−∞

|an|2

Continuous Fourier transform
Z ∞
−∞
|z(x)|2 dx =

Z ∞
−∞

W (kx ) dk

Continuous Fourier transform of finite
average power functions lim

L→∞

1
2L

Z L

−L
|z(x)|2 dx =

Z ∞
−∞

Wx (kx ) dk

But then comes the sampling-independence requirement (recall it?): PSDF should be
independent of how large part of the surface we measure and the sampling step.

Then the discrete PSDF must be just sampled continous Wx (kx ). No additional factors.
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Sampling-independence

Discretised PSDF correctly sampling the
continuous one (circular frequency) is thus:

Wν =
∆x

2π
|Zν |2 , Zν =

1
√

M

M−1X
j=0

zj e−2πi jν

Units of Wν are [dimension][height2].

Units can be used to distinguish Fourier
transform conventions:

I [height2] – plain DFT
I [dimension2][height2] – finite-energy

continous FT

Data sampling change effect:
I coarser data – smaller max. frequency
I smaller data – coarser PSDF sampling

Change of variables, e.g. circular versus
non-circular. Use that PSDF is density:
Wx (a) da = Wx (b) db.
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Windowing

Fourier coefficients of data contatining a discontinuity decrease slowly with frequency –
generally as 1/ν. This includes abrupt value change between the right and left edge.

Most of real surfaces is not periodic with sampling length being an integral multiple of the
period. This would completely ruin the PSDF estimate.

Solution: windowing – multiplying data with a smooth window function that falls to zero at
the edges.

FT of data is convolved with FT of window function – spectral leakage.

Furthermore, σ is changed by windowing – needs correction, for instance to ensure that
the RMS of windowed data is the same as original.

0.0
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Window
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100
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Examples
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Since all three surfaces have the same σ area under all three PSDF curves is the same.
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Non-uniform surfaces

Some surfaces are not the same everywhere:
I overall topgraphy needs to be separated from roughness
I non-uniform roughness, i.e. different statistical properties at different locations

We are on thin ice evaluating them – getting comparable results is difficult.

Most methods require tuning of some parameters or making other choices based a user
discretion.

Microchip surface TiO2 film at a certain growth stage



Roughness characterisation Non-uniform surfaces David Nečas et al. 25 / 27

Overall topography

ks kc kf

Spatial frequency kx

Low-pass High-pass

Texture can split to roughness and
waviness (overall shape) using some
kind of high-pass and low-pass filters:

I simple splitting in frequency domain
I Gaussian filters
I bidirectional and median filters...

But this is not really means to separate
arbitrary overall topography. . .
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Irregular areas

Surfaces with different statistical
properties in different places represent
an even more serious challenge. And
this is not covered by norms much.

The first step is masking – selecting
areas to analyse:

I by an automatic local criterion
I manually
I often a combination of both

That was the easy part. Now we need
to calculate some characteristics.

Simple: quantities based on height
distribution %(h) alone.

Reasonable: other local quantities
(e.g. slope-based).

Difficult: anything else.

But even ACF and PSDF can be
calculated – using some math tricks.

Full Rough Smooth
σ = 1.22 nm 1.85 nm 0.18 nm

Full Masked Grainwise
σ = 452 nm 490 nm 23 nm
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Conclusion

To assess roughness we have to quantify it.

Implicit assumption: the surface is ergodic and the same everywhere.

Depending on the application, parameters given by a norm or the physical problem at
hand can be used.

The most essential parameters describe the magnitude of roughness (Sq, Sa, . . . ) and are
based on height distribution.

Spatial parameters are based on peak counting (norms) or correlation properties
(physics).

Root mean square of height deviations and autocorrelation length can be obtained by
fitting the experimental ACF or PSDF.

Sampling (discretisation) requires some care to handle properly and define our
parameters sampling-independent.

If the surface is not the same everywhere we are not completely lost but comparability of
results suffers.
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